Brachial plexus injury Neurophysiology role

Dr Satya Duddu ST4 in Clinical Neurophysiology

- Basic concepts of nerve injury
- Electrophysiological features of nerve injury
- Questions which can be answered
- Timing of neurophysiology
- Localisation of injury & how to prognosticate

# Purpose of electrophysiology studies

• To localise pathology

• Type of pathology / nerve damage

Prognosticate - To intervene/not intervene

## Electrophysiology tests used

Sensory Nerve Conduction studies

Motor Nerve Conduction studies

Electromyography (EMG)

Sensory Evoked Potentials (SEP)





# The Nerve As An Electrical Wire



- Myelin Problem
  - Conduction failure across lesion (conduction block)

- Axon Problem
  - Small responses

#### Sensory Nerve studies Example-Ulnar SNAP





# Sensory Responses in Pathology

- More useful for localisation than motor studies
- Axonal (majority of Brachial plexus pathologies)
  Small
- Demyelinating
  - Depends whether nerve segment tested affected by demyelination

Sensory nerves checked - Median, Ulnar, Radial, Medial ante brachial cutaneous nerve of forearm, Lateral ante brachial cutaneous nerve of forearm

#### Motor Nerve conduction studies Ex: Median CMAP



# Motor Conduction Velocity



- Difference between two latencies
- Difference in distance (measuring tape)
- Nerve conduction velocity (distance/time)
  - Normal 50 m/s in upper limb

# **Axonal Vs Demyelinating** Normal Axonal Conduction Demyelinating Block

# Needle EMG

- Use a needle electrode to record muscle activity
- Connected to amplifier
  - Waveforms & sound

# Muscle at Rest

- Healthy muscle electrically silent
  - Muscle membrane at stable resting potential
- Resting membrane potential unstable if
  - Nerve axon loss so muscle loses its nerve connection (denervation)
- Spontaneous activity
- Fibrillations (fibs) and positive sharp waves (PSW) and fasciculations

#### **Fibrillations & Positive Sharp Waves**



#### Motor Unit Potential (MUP) Analysis

- Needle in contracting muscle
- Records motor unit potential
- Made up of several muscle fibre potentials comprising that motor unit



#### REIINERVATION

Normal

Post denervation



Polyphasic complex motor unit

Months later



# Example of EMG study report

| EMG Summary Table   |             |      |      |      |      |      |                 |     |          |
|---------------------|-------------|------|------|------|------|------|-----------------|-----|----------|
|                     |             |      |      |      |      |      |                 |     |          |
|                     | Spontaneous |      |      |      |      | MUAP | Recruitm<br>ent |     |          |
|                     | IA          | Fib  | PSW  | Fasc | H.F. | Amp  | Dur.            | PPP | Pattern  |
| R. DELTOID          | N           | 2+   | 2+   | None | None | N    | N               | N   | Discrete |
| R. BICEPS           | N           | 1+   | None | None | None | N    | N               | N   | N        |
| R. TRICEPS          | N           | 1+   | None | None | None | 2+   | 1+              | N   | Reduced  |
| R. FIRST D INTEROSS | N           | None | None | None | None | N    | N               | N   | N        |
| R. PECTORALIS MAJ   | N           | None | None | None | None | N    | N               | N   | N        |
| R. SERR ANT         | N           | None | None | None | None | N    | N               | N   | N        |
| R. LAT DORSI        | N           | None | None | None | None | N    | N               | N   | Reduce   |
| R. TRAPEZIUS (U)    | Ν           | None | 1+   | None | None | Ν    | N               | N   | Ν        |

#### Sensory Evoked Potentials (SEP)



# **Nerve Injury Classification**

Neurapraxia

Axonometsis

Neurometsis



# Neurapraxia

- Segmental demyelination, no interruption of axons
- Conduction block on NCS
- EMG reduced motor units but no fibrillations
- Recovery within few weeks
- "Saturday night palsy"
- No anatomical disruption



# Axonotmesis

- Interruption of axons and myelin sheaths but
- Endoneurial tube and surrounding connective tissue intact
- Wallerian degeneration (3-9 days)
- Regeneration spontaneous and good quality (wks to months but up to 2 years)
- Stretching/traction
- prolonged compression



## Neurotmesis

- Nerve completely severed, including axons and endoneurium
- Severe scar tissue  $\rightarrow$  neuroma  $\rightarrow$  pain & disorganisation
- Spontaneous regeneration impossible
- Knife injuries, severe traction, gunshot wounds
- Surgical treatment required



# **In Real Life**

- Nerve injuries don't fall neatly into these categories
- Pure traumatic neurapraxia is rare
- Most partial nerve injuries fit under partial axonotmesis
- Most complete nerve injuries complete axonotmesis or neurotmesis

## Spinal nerve formation.

Dorsal root - sensory function

Ventral root - motor function



## **Dermatomes & Myotomes**

• Dermatomes

Myotomes of upper limb





## Questions to Ask Your Neurophysiologist

- Is the lesion -PRE (root) or POST GANGLIONIC
- Are nerves in CONTINUITY & its QUALITY
- Extent of AXONAL injury and REINNERVATION
- LOCALISATION OF SITE of injury

# Pre vs. Post Ganglionic Lesion

- Sensory responses help with this localisation
  - Normal if pre-ganglionic (Nerve roots in this context)
  - Abnormal if post-ganglionic (Mixed nerve)



Normal SNAP

Normal SNAP

Absent SNAP

# Pre and post ganglionic lesion

|                            | Pre ganglionic<br>(Nerve Roots)               | Post ganglionic<br>(Mixed Nerve)                        |
|----------------------------|-----------------------------------------------|---------------------------------------------------------|
| Sensory studies<br>(SNAPs) | Normal                                        | Small/ absent                                           |
| Motor studies<br>(CMAPs)   | Small/absent                                  | Small/absent                                            |
| EMG                        | Abnormal in both paraspinal and limb muscles. | Paraspinal muscles- Normal.<br>Limb muscles-Denervation |
| SEP's                      | No response                                   | No response                                             |

# Continuity- to muscle

 Can a compound muscle action (CMAP) potential be recorded?

- If yes nerve supply to that muscle in continuity

Can motor units be recorded with EMG?
If yes nerve supply to that muscle in continuity

#### Time Course Distal Stump Degeneration- Timing of studies



Nerve

DAY 1

DAY 7 – 10 onwards

# Time Course Motor And Sensory- When to do NCS?

- Motor
  - CMAPS normal 2 to 3 days
  - Max drop by day 7
- Sensory
  - Normal first 7 days
  - Max drop by day 10
- Degeneration most marked in distal stump fibres
- Motor NCS impulses must pass thru most distal fibres and neuromuscular junction

# Time Course Needle EMG

- Fibrillation potentials
  - Appear 3 weeks onwards
  - May be as early as 7 days in paraspinal muscles
- Disappear
  - Muscle fibre reinnervated or
  - Muscle fibre degenerate

# **Sensory Studies Available**

- Thumb Median
  - Upper Trunk
  - Lateral Cord

#### Thumb – Radial

- Upper or Middle Trunk
- Posterior Cord
- Middle finger
  - Middle trunk
  - Lateral Cord
- Little finger Ulnar
  - Lower trunk
  - Medial Cord

- Lateral antebrachial cutaneous
  - Musculocutaneous
  - Lateral Cord
  - Upper trunk
- Medial Antebracial Cutaneous
  - Medial Cord
  - Lower trunk

# Localisation of Injury

- Single NCS gives limited information
- Multiple studies lead to localisation
- For Example;



#### Case

- 33 y, Male, had polytrauma 6 weeks ago in an RTA, injury to the right brachial plexus.
- There is no active abduction of the shoulder or external rotation and no active flexion at the elbow. Pectoralis major sternal head is contracting.
- There is near normal power in wrist flexion extension and finger movements and intrinsic activity.
- severe pain in right index and thumb.
- Which Myotomes/ Dermatomes ? C5,C6,C7

### **Sensory Nerve studies**

| Nerve / Sites               | Lat. 2 | Lat. | Amp.1-2 | Amp.2-3 | Dur. | Area | Vel. Pk   |
|-----------------------------|--------|------|---------|---------|------|------|-----------|
|                             | ms     | ms   | μ̈́V    | μ̈́V    | ms   | μVms | m/s       |
| R MEDIAN - Ortho radial     |        |      |         |         |      |      |           |
| Index                       | 2.92   | 2.29 | 9.5     | 11.3    | 1.15 | 5.7  |           |
| Middle                      | 2.76   | 2.34 | 14.5    | 18.5    | 1.04 | 8.2  |           |
| Thumb Median                | 2.50   | 1.72 | 6.6     | 4.4     | 1.46 | 3.5  |           |
| Thumb Radial                | NR     | NR   | NR      | NR      | NR   | NR   | $ \land $ |
| L MEDIAN - Ortho_radial     |        |      |         |         |      |      |           |
| Index                       | 3.13   | 2.60 | 25.0    | 35.0    | 1.25 | 18.2 |           |
| Middle                      | 3.02   | 2.45 | 27.0    | 34.0    | 1.30 | 18.1 |           |
| Thumb Median                | 3.02   | 2.45 | 22.9    | 30.5    | 1.30 | 15.7 |           |
| Thumb Radial                | 2.66   | 2.08 | 18.0    | 31.0    | 1.56 | 18.1 |           |
| R ULNAR - Ortho - V         |        |      |         |         |      |      |           |
| V                           | 2.55   | 2.03 | 7.6     | 7.6     | 1.20 | 4.0  |           |
| L ULNAR - Ortho - V         |        |      |         |         |      |      |           |
| V                           | 2.81   | 2.29 | 6.3     | 11.6    | 1.25 | 5.8  |           |
| L ABRACH C N FORE - Lateral |        |      |         |         |      |      |           |
| Elbow                       | 2.66   | 2.14 | 8.8     | 1.9     | 0.94 | 2.9  | 45.2      |
| Elbow                       | 2.55   | 2.19 | 8.4     | 5.2     | 0.89 | 3.8  | 47.0      |
| 3                           | 2.45   | 1.56 | 20.1    | 5.7     | 1.56 | 8.5  |           |
| R ABRACH C N FORE - Lateral |        |      |         |         |      |      |           |
| Elbow                       | NR     | NR   | NR      | NR      | NR   | NR   | NR        |
| Elbow                       | NR     | NR   | NR      | NR      | NR   | NR   | NR        |
| Elbow                       |        |      |         |         |      |      |           |
| 4                           |        |      |         |         |      |      |           |

#### Motor Nerve studies

| Nerve / Sites  | Lat. | Amp.1-2 | Dur. | Area | Amp.1-2 | Dur. | Area | Dist. | Vel. |  |
|----------------|------|---------|------|------|---------|------|------|-------|------|--|
|                | ms   | mV      | ms   | mVms | %       | %    | %    | cm    | m/s  |  |
| R MEDIAN - APB |      |         |      |      |         |      |      |       |      |  |
| Wrist          | 3.02 | 9.2     | 6.72 | 34.3 | 100     | 100  | 100  | 8     |      |  |
| R ULNAR - ADM  |      |         |      |      |         |      |      |       |      |  |
| Wrist          | 2.40 | 6.6     | 7.34 | 28.3 | 100     | 100  | 100  | 8     |      |  |
| B.Elbow        | 7.24 | 7.5     | 7.45 | 31.1 | 113     | 101  | 110  | 25    | 51.6 |  |
| A.Elbow        | 8.59 | 8.5     | 7.34 | 31.8 | 129     | 100  | 112  | 8     | 59.1 |  |

#### Needle EMG

| EMG Summary Table |             |      |      |      |      |      |      |     |                 |
|-------------------|-------------|------|------|------|------|------|------|-----|-----------------|
|                   | Spontaneous |      |      |      |      | MUAP |      |     | Recruitme<br>nt |
|                   | IA          | Fib  | PSW  | Fasc | H.F. | Amp  | Dur. | PPP | Pattern         |
| R. TRICEPS        | N           | None | None | None | None | 1+   | N    | N   | Reduced         |
| R. BICEPS         | N           | 1+   | 1+   | None | None | -    | -    | -   | No Activity     |
| R. DELTOID        | N           | 3+   | 3+   | None | None | -    | -    | -   | No Activity     |
| R. PECTORALIS MAJ | N           | 1+   | 1+   | None | None | N    | 2+   | 2+  | Reduced         |

# Opinion

- There is electrophysiological evidence of active denervation in right C5/6 innervated muscles (biceps and deltoid).
- There was no evidence of continuity of the right axillary or musculocutaneousnerves, and no voluntary motor units were seen in the

muscles∎

• Evidence of axonal injury was also seen in the right pectoralis major. There was evidence of reinnervation in the voluntary motor units seen. Therefore

reasonable function in medial pectoral nerve

- EMG to the right triceps showed large motor units with fairly good recruitment.
- Right ulnar motor and sensory studies were normal.

- There is evidence of a postganglionic component of the right brachial plexus injury given that the right upper limb sensory nerve responses are reduced in amplitude as described above, and the right superficial radial nerve response from the thumb is absent.
- However there may also be a significant preganglionic injury to the right upper trunk given that there is no active contraction in upper trunk muscles but still a median sensory response recordable (of slightly reduced amplitude) from the right index

finger and thumb



# PITFALL

- If sensory abnormal
  - Looks like post ganglionic lesion
  - CANNOT exclude a coexisting preganglionic lesion as well
- Pre and post ganglionic lesions often coexist in high velocity trauma
- Absent motor response but still recordable small sensory response suggestive of preganglionic
- Intraoperative SEP may help
  - Stimulate root
  - If SEP present preganglionic portion is working

# Summary

- NCS/EMG assess
  - Site of brachial plexus injury
  - Whether lesion in continuity
  - Degree of axonal loss
- Timing of studies important 3 weeks or later
- Follow up studies may be helpful
- Provide information to aid with decision to surgically intervene or not